USN

Third Semester B.E. Degree Examination, December 2012 Material Science and Metallurgy

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

<u>PART – A</u>

- 1 a. Define atomic packing factor and calculate atomic radius and packing factor for BCC structure. (08 Marks)
 - b. With a neat sketch, explain the line dislocation. (06 Marks)
 - c. State and explain the first Fick's law of diffusion.

(06 Marks)

- 2 a. With the help of a neat schematic conventional stress-strain diagram for mild steel under tension, explain clearly the behaviour of the material till fracture. (08 Marks)
 - b. Explain non-linear elastic properties when a material is subjected to static tension. (06 Marks)
 - c. What is work hardening? Explain the reasons for the same.

(06 Marks)

3 a. Explain with neat figure ductile fracture using both stress-strain and stages of fracture.

(08 Marks)

b. What is mean by stress relaxation? Explain with figure.

(06 Marks)

- c. With the help of sketch, discuss the different types of stress cycles which bring about fatigue failure. (06 Marks)
- 4 a. Explain with neat sketches the different stages of mechanisms of solidification. (08 Marks)
 - b. Define solid solution. Explain the substitutional and interstitial solid solution. (08 Marks)
 - c. Explain the factors governing the formation of substitutional solid solutions. (04 Marks)

PART – B

- 5 a. Draw and explain the Iron Iron carbide equilibrium diagram and label all the points and fields. (10 Marks)
 - b. Construct a phase diagram using the following data and label all the fields:

Melting point of $Ag = 961^{\circ}C$

Melting point of Cu = 1083°C

Eutectic temperature = 780°C

Eutectic composition = 28% Cu.

Max. solubility of Cu in Ag = 9% at 780°C

Max. solubility of Cu in Ag = 2% at 0° C

Max. solubility of Cu in Ag = 9% at 780°C

Max. solubility of Cu in Ag = 0% at 0° C

Determine the following:

- i) Solidification start and end of temperature for 30% Ag alloy.
- ii) Temperature at which a 15% Cu alloy has 50% liquid phase and 50% solid phase.
- iii) Percentage composition of liquid and solid phase in 20% Ag alloy at 900°C. (10 Marks)
- 6 a. Draw the TTT diagram of austenite for eutectoid steel. Explain the various transformations product of austenite. (08 Marks)
 - b. Discuss the process temperature range, microstructure of products and applications of stress relief annealing. (06 Marks)
 - c. Explain with neat sketch induction hardening process.

(06 Marks)

10ME32A/AU32A/TL32

- 7 a. Give the composition, structure and their applications of
 i) S.G. Iron
 ii) Malleable Iron
 iii) Gray cast iron.
 (08 Marks)
 - b. Name at least four important copper base alloys. Give composition microstructure and their applications. (08 Marks)
 - c. Write a note on Al-Si alloys. (04 Marks)
- 8 a. Explain the term composite materials with examples. State their advantages and limitations of composites in practice. (08 Marks)
 - b. Using neat sketch, explain the process of preparation of metal matrix composite using melting and casting method. (08 Marks)
 - c. What are FRPs? Give at least four examples. (04 Marks)

* * * *